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Field Solution, Polarization, and Eigenmodes
of Shielded M1crostr1p Transmlssmn Line

ESSAM E. HASSAN

Abstract — Application of the reciprocity theorem leads to a variational
expression for the propagation constant of the fields inside shielded
microstrip-like transmission lines. The resulting equation involves both the
propagation constant and the tangential fields at the air-dielectric inter-
face. Using the Rayleigh-Ritz optimization technique, both the propa-
gation constant and the fields are completely determined.

The calculated results of the propagation constant compare well with
other available data. Moreover, the field solution obtained is presented in
the form of a polarization ratio relating the axial to the transverse electric
field. Results cover both low and high frequencies, and the technique
proves valid at both frequency ranges. The method may be extended to
other configurations of planar striplines by proper adjustment of the
integration limits.

I. INTRODUCTION

HE problem of solving for the dispersion characteris-

tics of shielded microstrip line has been tackled by
many authors, either using the quasi-TEM theory [1]-[4]
or through more rigorous analytical techniques [S]-[8].
Results for higher order modes have been reported by
several authors [8]-[11]. Most of the techniques used in-
volve some large set of equations to be numerically solved.
In all data so far published in the literature, nothing or
very little has been said about the form of the field inside
the structure. This field is neither a purely TE nor a purely
TM mode, rather it is a hybrid mode and cannot be
directly obtained from a single scalar potential. A thor-
ough understanding of this field configuration is an im-
portant factor in both the efficiency and the proper oper-
ation of many devices employing the microstrip line. This
paper presents a powerful method to obtain both the field
distribution and the propagation modes supported by this
structure. The method is based on the application of the
reciprocity theorem in the two domains comprising the
shielded line. This leads to a variational expression for the
propagation constant in the form of an integral equation
linking the fields at the air—dielectric interface. With a
proper field expansion and the Rayleigh—Ritz optimization
technique, the relative amplitudes of the field components
are determined, and the integral equation lends itself to a
simple transcendental equation similar in nature to those
of the LSE and LSM modes in the dielectric-loaded wave-
guide. A similar technique has been employed earlier by
Rumsey [12] and by Harrington [13] in their treatment of
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radiation from an axially slotted waveguide. Numerical
results using this method are presented for several cases,
which compare well with the published data [9], [10], [17].
The method, in addition, points out the close relationship
between the higher order modes and their counterparts of
the LSE and LSM modes of the dielectric-loaded wave-
guide. Finally, the technique can easily be extended to
handle the coplanar stripline {14}, [15] and the various
forms of microstrip transmission lines.

II. FORMULATION OF THE PROBLEM

A. Field Components

Fig. 1 shows a microstrip-like transmission line with two
lossless dielectric layers. Region I has a relative dielectric
constant €, and Region II is free space. The metal strip is
of width 2¢ and assumed to be perfectly conducting with
negligible thickness. The metallic shield enclosure is as-
sumed of infinite conductivity and of width 2L and height
h, and the dielectric layer of Region I is of height d.
Although the technique presented here is quite general and
could be easily applied to any number of inner conductors
once the proper integral limits are considered, the analysis
will be restricted to the case of a single conductor symmet-
rically placed inside the enclosure as shown in Fig. 1. In
this inhomogeneous structure, the fields cannot be as-
sumed to be purely TE or TM modes, rather a superposi-
tion of both TE and TM is unavoidable. Let the TE modes
be derived from a scalar potential ¥ and the TM modes
be derived from a scalar potential ¥* (i =1 or 2 depend-
ing on the region). It is necessary to point out here that
because of the symmetry of the structure, two orthogonal
sets of modes exist. The first has a symmetric E, and an
antisymmetric H, (this mode is known as E, even—H,
odd), and the other has an antisymmetric E, and a sym-
metric H, (known as E, odd-H, even). The TEM-like
mode is the lowest order E, even— H, odd mode [17]. The
analysis will be carried out for the E, even- H, odd modes,
and the necessary modification for the solution of the
other mode will be given whenever appropriate. Now let
the scalar potentials for the E even— H, odd modes be

given by
o0
= Y A¢sinhaPxsiny,ya,
n=1
for Region 1
[e o]
Tl =Y A’coshalPxcosy,ya,

n=1
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Fig. 1. Microstrip configuration.
and
(o]
Vs =Y Bfsinha@®(h—x)siny,yd,
n=1
for Region I1
[oo}
V)= Y Bl'cosha®(h—x)cosy,yd, (1)
n=1

where the factor exp j(wt — 8z) is understood and
.= (@n-1I1/2L,
ol =y +B*— K}

A%, A2, B!, and B¢ are unknown coefficients
Kl=¢,K¢.

n=1,2,3,...

2,2
Ky = wpeeo

€, and p, are the permittivity and the magnetic permeabil-
ity of free space, and ¢, is the relative permittivity of
medium I. With w = 2IIf the operating frequency (rad/s),
B is the desired propagation constant. For the E, odd- H,
even modes the term siny,y replaces cosy,y, and vice
versa. Also, y,=nw/L, and the summation should start
from 0 to co.

The hybrid field components are derived from the above
scalar potential in a way similar to that presented in [8].
Applying the appropriate boundary conditions of the
tangential electric and magnetic fields along the plane
x = d and using the orthogonality of sinusoidal functions,
the coefficients 4%, 42, B! and B¢ may all be obtained in
terms of the integrals /,(n) and I,(n) defined as [8]

Iy(n)=ftLEy

siny, ydy
d

x=

L(n)=['E.

)

cosy,ydy.
x=d
By substituting this set of coefficients in (1), all field
components in either region are readily obtained in terms
of the values of E, and E, along the plane x = d.

——t———— ~

Fig. 2. Cross section of slotted waveguide.
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Fig. 3. Microstrip transmission line with M metal strips.

B. Variational Expression

Rumsey, in his treatment of the leaky wave slotted
waveguide [12], has shown that a stationary expression for
the propagation constant B of the cross section shown in
Fig. 2 1s

w2

" e ) (=) =0 )

4) =
where E, and E, are the components of the assumed
electric field in the slot and ‘H and °H are the internal and
the external magnetic fields which fit the assumed E, and
E,. Using the same approach, a similar expression could be
applied to the configuration of Fig. 1. Further, the integra-
tion could be taken along as many slots as there are in the
interface between the two regions. Thus, for the configura-
tion of Fig. 3, (3) becomes

Y f[Evm('Hzm —°H,,,)+E,,('H,,, —"Hym)] dy=0
4)

where the subscript m refers to the mth slot of a total of
M slots. For the configuration of Fig. 1, using the field
components as obtained from the scalar potentials (1)
where the set of constants 4%, 42, B/ and B¢ are all in
terms of /,(n) and I,(n) and substituting in (3), one gets,
after some manipulation, an expression of the form

(n) = X S,I(n)+ 3 VL, (n)L(n)

n=1 n=1

+ Y Un) =0 (5)

n=1
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where
2‘] 2 2 2 2
S":_wp.OL[(B _K1)G1(”)+(B —Ko)Gz(”)]
V,= - BV" G+ 6]
2.
U,,=;;j;[(Kf—yz)Gl(nH(Kg—y,z)ea(n)]
with

G,(n) = cotha®d /a®
G,(n) =cotha@®(h—d)/a®.

Equation (5) has three unknowns, the propagation con-
stant B and the slot electric fields E, and E,. As men-
tioned previously, (5) is a stationary expression for 8, and
reasonable assumed values for E, and E, when substituted
in it will yield a very close approximation to the true value
of B. The electric field components at x =d are to be
expanded in a set of orthogonal functions with unknown
coefficients (a,’s and b,’s) in the form

© p—1)=
Blesm ¥ ayn S50
Eham £ 0o L0600 @

with a; normalized to unity.

Substituting (6) in (5), one gets the stationary expression
of B in terms of the coefficients a, and b_. Now, since the
assumed field expansion is a complete set, the Rayleigh—
Ritz optimization procedure could be applied to the result-
ing equation by successively differentiating ¢(n) with re-
spect to a,’s and b,’s and setting the result to zero, i.e.,

do(n)
=0, =2,3,4,---
da, P (7a)
do(n)
=0’ =1,2’ . . e 0 .
&, q 3 (7b)

This optimization technique must, in principle, obtain
the true values of the field as the number of terms in the
expansion (6) approaches infinity. The successive differ-
entiations as given by (7a) and (7b) when truncated at P
and Q, respectively, will result in a set of (P+Q—1)
equations in the unknown coefficients a,, a5,::+,a » and
by, by, -+, by along with B. This set; along with (5), may be
solved as shown later to determine both 8 and the un-
known coefficients. Once these coefficients are known, all
field components are readily obtained. Detailed discussion
of the solution is presented in Section III of this paper.

It is interesting at this stage to examine the very simple
case of P=Q =1. In such case, with a; =1 one gets

—[ f V,,Iy(n)zz(n)} / [z f U,,13<n)]. ®)
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Substituting back in (6) and using the result in (5), the
latter will take the form

IBZ)Gl(")"'(K(%“

82)G,(m)] 12(n)
—{Bz[ £ 161+ 0110 2

é[(Kf—v,?)Gl(n)

+ (K3 =) Gom)] 12(m)} = ©)

If a further simplification is made and we consider only
the n =1 term of (9), the resulting expression will satisfy
the characteristic equations for the LSE and the LSM of
the corresponding partially dielectric-filled waveguide,
namely [16],

aPcot a{Vd = ~ aPcota®(h—d)  for LSE
and -
cot a{Pd cotaP®(h—d)
“ = o for LSM. (10)
i 1

This establishes analytically the closeness of the solution of
the propagation mode for the LSE and LSM of the dielec-
tric loaded waveguide and the corresponding shielded mi-
crostrip line, a fact that has been observed numerically [9].

The analysis for the E odd- H even modes follows the
same steps and will yield an expression similar to (9).
However, the sine and cosine terms of the assumed slot
field, (6), should be interchanged. Further, in (1) the
summation over » starts at n=0, and the n=0 term
should be halved.

III.

As explained earlier, the solution is based on combining
(5) along with (7). Th1s results in the following set of
equatlons

Z2Sf( )Z olp(n )+ZVf(n)qugq( )

n=1

SOLUTION OF THE PROBLEM

- §2Snf,-(n)f1(n), i=23 0P
n=1

and

Z v.g,(n) Zza fp(n)+ Z 2U,8,(n) E byg4(n)

n=1

N
- Y V.g,(n)fi(n).

" on=1

i=123,--,0 (11)

where

(y-

f,(n) = j;L{Sin [(2P '1)775(7?)}'5111%.)1} dy
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and

g,(n)= ftL{cos [(2q—1)w%}-cosyny} dy.

These are (P —1+ Q) simultaneous linear equations in
the unknowns a,, a,,- - -, a,, by, by,- - -, by. Notice that the
propagation constant f is still unknown and is part of the
coefficients of the set (11). To complete the solution, (5) is
added to the set (11). The solution for B is sought first,
and once it is known the field coefficients are readily
obtained. The technique adopted is straightforward. We
assume a value for 8 which is chosen close to the true
value. (This is chosen in the vicinity of the value of the
propagation constant for the corresponding mode of a
similar dielectric loaded waveguide, for the non-TEM
mode, and is chosen to be \(1+¢,)/2 K, for the TEM
mode.) The coefficients a, and b, are then obtained from
(11) for the assumed value of B8, and the result is sub-
stituted in (5), which must be zero for the true value of S.
The procedure is iterated until the zero is captured. The
value of 8 is then obtained, and the coefficients a ,and b,
hence the field solutions, are readily available. In the
following section, some results are presented and dis-
cussed.

IV. RESULTS AND DISCUSSION

A. TEM Mode

Figs. 4 and 5 represent the normalized propagation
constant B/K,, as a function of frequency, compared with
results published in [8], [9], and [18]. The results of this
paper are presented for frequencies up to 50 MHz and, if
desired, could be easily extended to higher frequencies.
The results are shown to be almost identical with those of
the nonuniform discretization of integral equation [9] and
very close to the results of [10] in all frequency spectrums
tested up to 50 MHz. This verifies the accuracy of the
technique. Such good agreement with [9], [10] seems to
have its importance at the high frequency region where
discrepancy is noticed between our work and other meth-
ods presented here [8], [18] or presented in [9]. The accu-
racy of the empirical formulas [19], [20] seems to be
inaccurate by a considerable margin at high frequencies
[9].

Convergence towards the true value of B could be
obtained in a relatively small number of expansion terms.
When the expansion of (6) is truncated at p =g =10, a
3—4 percent discrepancy of the true value of § is noticed.
Such convergence with a low number of terms and subse-
quently low computational time is indeed expected to be
due to the stationary nature of the expression. If higher
accuracy is desired, a higher number of expansion terms
could be used. In the results presented here, an initial
iteration at p = ¢ =38 is executed starting at a value of B
=y/(1+¢,)/2 -K,. When the root is captured, it is used as
a starting iteration for a second stage at p = ¢ =20 to 22.
In all cases examined, such a number of terms would result
in a stable value of 8. Table I presents an example of such
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Fig. 4. Variation of /K, with frequency compared with other meth-
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Fig. 5. Variation of B/K, with frequency. ¢, =8.875, 2L =12.7 mm,

h=127mm, d =127 mm.

TABLEI
CONVERGENCE OF THE RooT 8/K; AGAINST THE NUMBER OF
ExpANsION TERMS

P Q B/Kq
3 3 3.1535
6 6 2.9405
10 10 2.8593
20 20 2.7968
22 22 2.7906
23 23 2.7885

f=15 GHz, 2¢=1.905 mm, 2L =127 mm, €= 8.875, d=127 mm,
h=12.7 mm.

a result for the specific case indicated. The number of
expansion terms used is comparable with that of the
integral equation method of [9]. Examination of the results
shows that the value of 8/K seems to tend to a constant
value as the frequency increases. Investigating several re-
sults shows that this limiting value approaches \/; . For
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Fig. 7. Variation of polarization ratio R with frequency. Parameters are
those of Fig. 5.

example, the result shown in Fig. 5 for €, = 8.875 tends to
about 2.96 while \/—ej is 2.979. Other results available to the
author (not shown here) showed that for €, =5 and 12 the
limiting  values are around 2.18 and 3.45, respectively,
which are very close to V5 =2.23 and V12 = 3.46. It is also
found that in such case, the higher the value of ¢,, the
closer the ratio (limiting value of [8/K,]/ \/e‘, ) is to unity.
This result indicates that the field in the very-high-
frequency case would possibly concentrate in the dielectric
region acquiring its mode of propagation.

Turning our attention now to the field polarization,
Figs. 6 and 7 present some examples of the results ob-
tained. These results are obtained by evaluating the coeffi-
cients a, and b, of the expansion (6) as indicated in the
theory. Numerical evaluation shows that a large number of
terms of the expansion (6) are needed to obtain stabilized
values for the first few terms. Fig. 8 shows the convergence
of the first term of each of the a’s and b/’s. It is clear that
they are slowly approaching a limit as the number of terms

increases. In all calculations of the polarization ratio R of -

Fig. 7 (defined as |E,|/ \“Ele"‘ |Ey2|) or polarization P of
Fig. 6, up to 22 terms of each expansion are considered to
approach as accurately as possible the true value of the
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field. It is found that inclusion of higher number of terms
does not alter the value of R appreciably. Fig. 6 shows a
plot of the polarization |E,|/ |E,| versus frequency for two
different values of ¢, as compared with the only data
available to the author. This comparison is the reason to
consider |E,|/|Ey| and not the axial-to-total field ratio
(ie., |E,|/\IE]|+|E]| as considered in Fig. 7). Results
show that the axial component of the electric field E, is
negligibly small at low frequencies where the field ap-
proaches true TEM. In fact, the quasi-TEM theory as
shown in [17] is highly accurate at this region. At higher
frequencies, however, the value of the axial field compo-
nent E, increases and the field deviates from the TEM-like
mode. Fig. 6 shows this general trend for two different
values of dielectric constant €, compared with data pub-
lished in-[17]. The agreement is quite remarkable. It is
shown that the polarization ratio decreases as e, decreases,
which is expected since as €, approaches unity one should
expect a true TEM mode inside the structure. In Fig. 7, the
polarization ratio R versus frequency is presented for
several different strip widths. The same general trend of
very low R at low frequency is observed. Also, it seems
that the polarization ratio tends towards a limit at wave-
length comparable to the structure dimensions. Further
work is under way to investigate analytically such limit. It
is clear that the ratio R is insensitive to the strip width, but
is primarily a function of frequency and dielectric constant
as evident from Figs. 6 and 7.

B. Higher Order Modes

Higher order modes were also investigated with respect
to both their propagation constant and polarization ratio.
Figs. 9 and 10 give the value of 8/K, compared with data
published in the literature. Results are almost typical of
those of [9]. However, this technique has the advantage of
being highly convergent. Table II shows a sample of the
results available where a total of only five terms was
sufficient to obtain a value for /K, with an error less
than 0.4 percent. This was noticed in all results examined
for the first as well as the higher-order modes. The similar-
ity of the f — B characteristics of these curves and the LSE
or LSM is evident and is discussed elsewhere [8], [9]. The
study of the polarization factor (Fig. 11) reveals the same
general characteristics observed in the TEM-like modes.
The value of R is low at low frequencies but, compared to
the TEM mode, it increases appreciably as the frequency
increases. They seem to tend to a limit. However, extra
work is needed to investigate such limiting value. Further,
the value of R decreases—as expected—with the lower
value of ¢,. The convergence of the cocfficients of expan-
sion (6) is found to be much faster here than in the TEM
case. An example of this convergence is given in Table III.
Such difference in convergence may be attributed to the
difference in behavior between the TEM and the higher
order modes. While the expansion (6) is most suited for the
higher order modes, it might be more appropriate (for fast
convergence) to assume an expansion for the TEM which
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compared with other published data (dimensions are in millimeters).
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TABLEII
CONVERGENCE OF THE PROPAGATION CONSTANT.

P

f = 15 GHz 25 GHz
No. of terms M 3, 3 6, 6 9, 9 3, 3 6, 6 9, 9 12, 12
Root B/K0 0.780]| 0. 784 0.785 |1.754 1,7592 | 1.7580 | 1.757¢
Parameters are those of Fig. 9.
R
Ir fr=12
0.8¢L
€r=8.875
0.6
0.4
€r=2
0.2
15 20 25 30 £(GHz)
Fig. 11. Polarization R of the first mode for different values of ¢,. Parameters are those of Fig. 9.
TABLE III o order modes were also investigated, and the similarity
FI F
EXAMPLE OF CONV’E‘;;’LC;O‘LF (Tgl)m OEFFICIENTS O between such modes and those of the LSE and LSM was
shown both analytically and numerically.
Nurber of tems M a, 33 by by 03 ACKNOWLEDGMENT
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3, 3) -0.627 0.124 -2.5 1.20 0.2 . . . .
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For the parameters of Fig. 9 (f =25 GHz).

takes into account the similarity between the TEM and the
corresponding static field for the same configuration.

Polarization for higher order modes is also investigated.
The general behavior is the same as for the TEM mode,
and they carry no new information to present.

V. CONCLUSION

This paper presents a variational technique to solve for
the dispersion characteristics as well as the field configura-
tion inside the shielded microstrip transmission line. The
technique allows for rapid convergence of the propagation
constant due to the variational nature of the expression,
and the results are very close to results published previ-
ously. Further, the field solution is obtained and compares
well with the only data available to the author. Higher
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