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Field Solution, Polarization, and Eigenmodes
of Shielded Microstrip Transmission Line

ESSAM E. HASSAN

Abstract —Application of the reciprocity theorem leads to a variational

expression for the propagation constant of the fields inside shielded

microstrip-like transmission lines. The resntting eqnation involves both the

propagation constant and the tangential fields at the air-dielectric inter-

face. Using the Rayleigh-Ritz optimization technique, both the propa-

gation constant and the fields are completely determined.

De calculated results of the propagation constant compare well with

other available data. Moreover, the field solution obtained is presented in

the form of a polarization ratio relating the axiaf to the transverse electric

field. Results cover both low and high frequencies, and the technique

proves vahd at both frequency ranges. The method may be extended to

other configurations of planar striplines by proper adjustment of the

integration limits.

I. INTRODUCTION

T HE problem of solving for’ the dispersion characteris-

tics of shielded rnicrostrip line has been tackled by

many authors, either using the quasi-TEM theory [1]–[4]

or through more rigorous analytical techniques [5]–[8].

Results for higher order modes have been reported by

several authors [8]–[11]. Most of the techniques used in-

volve some large set of equations to be numerically solved.

In all data so far published in the literature, nothing or

very little has been said about the form of the field inside

the structure. This field is neither a purely TE nor a purely

TM mode, rather it is a hybrid mode and cannot be

directly obtained from a single scalar potential. A thor-

ough understanding of this field configuration is an im-

portant factor in both the efficiency and the proper oper-

ation of many devices employing the microstrip line. This

paper presents a powerful method to obtain both the field

distribution and the propagation modes supported by this

structure. The method is based on the application of the

reciprocity theorem in the two domains comprising the

shielded line. This leads to a variational expression for the

propagation constant in the form of an integral equation

linking the fields at the air-dielectric interface: With a

proper field expansion and the Rayleigh-Ritz optimization

technique, the relative amplitudes of the field components

are determined, and the integral equation lends itself to a

simple transcendental equation similar in nature to those

of the LSE and LSM modes in the dielectric-loaded wave-

guide. A similar technique has been employed earlier by

Rumsey [12] and by Barrington [13] in their treatment of
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radiation from an axially slotted waveguide. Numerical

results using this method are presented for several cases,

which compare well with the published data [9], [10], [17].

The method, in addition, points out the close relationship

between the higher order modes and their counterparts of

the LSE and LSM modes of the dielectric-loaded wave-

guide. Finally, the technique can easily be extended to

handle the coplanar stripline [14], [15] and the various

forms of microstrip transmission lines.

II. FORMULATION OF THE PROBLEM

A. Field Components

Fig. 1 shows a microstrip-like transmission line with two

lossless dielectric layers. Region I has a relative dielectric

constant c, and Region II is free space. The metal strip is

of width 2t and assumed to be perfectly conducting with

negligible thickness. The metallic shield enclosure is as-

sumed of infinite conductivity and of width 2L and height

h, and the dielectric layer of Region I is of height d.

Although the technique presented here is quite general and

could be easily applied to any number of inner conductors

once the proper integral limits are considered, the analysis

will be restricted to the case of a single conductor symmet-

rically placed inside the enclosure as show-n in Fig. 1. In

this inhomogeneous structure, the fields cannot be as-

sumed to be purely TE or TM modes, rather a superposi-

tion of both TE and TM is unavoidable. Let the TE modes

be derived from a scalar potential ~: and the TM modes

be derived from a scalar potential T? (i= 1 or 2 dependi-

ng on the region). It is necessary to point out here that

because of the symmetry of the structure, two orthogonal

sets of modes exist. The first has a symmetric E= and an

antisymmetric H, (this mode is known as E, even– H,

odd), and the other has an antisymmetric E, and a sym-

metric HZ (known as E, odd– Hz even). The TEM-like

mode is the lowest order E, even– Hz odd mode [17]1. The

analysis will be carried out for the E, even– H, odd modes,

and the necessary modification for the solution of the

other mode will be given whenever appropriate. Now let

the scalar potentials for the E= even– Hz odd modes be

given by

yf = ~ A: sirtha~’jxsiny~yZX
~=1

for Region I

~: = ~ A:cosha:l)x COS yny~x

~=1
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Fig. 1. Microstrip configuration.

and

for Region II

*J= ~ B;cosha:2)(h – X) COSYnyiix (1)
~=1

where the factor exp j( at – #z ) is understood and

yn = (2n –l)rI/2L, n=l,2,3, . . .

A!, A;, B;, and B; are unknown coefficients

c~ and p. are the permittivity and the magnetic permeabil-

ityy of free space, and ~, is the relative permittivity of

medium I. With u = 21T~ the operating frequency (rad/s),

/3 is the desired propagation constant. For the EZ odd-HZ

even modes the term sin y. y replaces cos y. y, and vice

versa. Also, y~ = n n/L, and the summation should start

from O to co.

The hybrid field components are derived from the above

scalar potential in a way similar to that presented in [8].

Applying the appropriate boundary conditions of the

tangential electric and magnetic fields along the plane
x = d and using the orthogonality of sinusoidal functions,

the coefficients -4~, A;, B:, and B: may all be obtained in
terms of the integrals I,(n) and ~z(n) defined as [8]

lY(n)=J~EY sin y. y dy
t ~=d

Iz(n)=/~Ez COSYny dy. (2)
t ~ad

By substituting this set of coefficients in (l), all field

components in either region are readily obtained in terms

of the values of EY and E, along the plane x = d.

Y

Fig. 2. Cross section of slotted waveguide.
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Fig. 3. Microstrip transmission line with M metal strips,

B. Variational Expression

Rumsey, in his treatment of the leaky wave slotted

waveguide [12], has shown that a stationary expression for

the propagation constant ~ of the cross section shown in

Fig. 2 is

I#I=j_w;2[Ey(rHz -’H,)+ E,(’HY -’w,)] dy= O (3)

where EY and EZ are the components of the assumed

electric field in the slot and ‘H and ‘H are the internal and

the external magnetic fields which fit the assumed EY and

E=. LJsing the same approach, a similar expression could be

applied to the configuration of Fig. 1. Further, the integra-

tion could be taken along as many slots as there are in the

interface between the two regions. Thus, for the configura-

tion of Fig. 3, (3) becomes

.:lmd’=eH’J+E4’%-’%)1‘Y=o
(4)

where the subscript w refers to the rn th slot of a total of

M slots. For the configuration of Fig. 1, using the field

components as obtained from the scalar potentials (1)

where the set of constants A!, A ~, B$, and B; are all in

terms of lY ( n ) and 1=(n) and substituting in (3), one gets,

after some manipulation, an expression of the form
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where

&[(kw)GAn)+(l P-K;)G2(n)]sn=– —

vn=– &[ G,(n) +G,(n)]

2J [( Kf-y:)G,(n)+(Ki-Y~ )G2(~)]un=—
upOL

with

Gl(n ) = cothc#Jd/a;l)

G2(n) = coth(x~’~(h – d)/a\2).

Equation (5) has three unknowns, the propagation con-

stant ~ and the slot electric fields EY and E=. As men-

tioned previously, (5) is a stationary expression for ~, and

reasonable assumed values for EY and E, when substituted

in it will yield a very close approximation to the true value

of ~. The electric field components at x = d are to be

expanded in a set of orthogonal functions with unknown

coefficients ( aP’s and b~’s) in the form

(2p-l) m(y_t)
EYIX=~= ~ aPsin

~=~ 2(L–t)

(2q-l)7r
EzIX=~= E b~cos 2(L_t) (Y–-t) (6)

~=1

with al normalized to unity.

Substituting (6) in (5), one gets the stationary expression

of ~ in terms of the coefficients up and b~. Now, since the

assumed field expansion is a complete set, the Raylei@–

Ritz optimization procedure could be applied to the result-

ing equation by successively differentiating +( n ) with re-

spect to aP’s and b~’s and setting the result to zero, i.e.,

d+(n)

daP ‘0’
p=2,3,4, . . .

d+(n) =0

db~ ‘
q=l,2,3, . . . .

(7a)

(7b)

This optimization technique must, in principle, obtain

the true values of the field as the number of terms in the

expansion (6) approaches infinity. The successive differ-

entiations as given by (7a) and (7b) when truncated at P

and Q, respectively, will result in a set of (P+ Q – 1)

equations in the unknown coefficients a‘, a ~,. .”, ap and

bl, bz, ” . “ , b~ along with ~. This seti along with (5), maybe

solved as shown later to determine both /3 and the un-

known coefficients. Once these coefficients are known, all

field components are readily obtained. Detailed discussion

of the solution is presented in Section III of this paper.

It is interesting at this stage to examine the very simple

case of P = Q =1. In such case, with al = 1 one gets

847

Substituting back in (6) and using the result in (5), the

latter will take the form

,l~l[(~;- ~2)G~(n)+(~~-P2 )GZ(n)]l~(n)

{[ 1-B’$ly~(G~(n)+,G’( n))lY(n)lZ(n) 2

LN(
co

~/–i?)Gl(n)
/ ?7=1

+ (K&yj’)G2(n)] l;(n)} =0. (9)

If a further simplification is made and we consider only

the n = 1 term of (9), the resulting expression will satisfy

the characteristic equations for the LSE and the LSM of

the corresponding partially dielectric-filled waveguide,

namely [16],

c#) cot afl)d = – af2Jcot af2J( h – d ) for LSE

and -

cot af)d cotaf)(h–d)
(, ._ for LSM. (10)@ 42)

This establishes analytically the closeness of the solution of

the propagation mode for the LSE and LSM of the clielec-

tric loaded waveguide and the corresponding shielded mi-

crostrip line, a fact that has been observed numerically [9].

The analysis for the E odd-H even modes follows the

same steps and will yield an expression similar to (9).

However, the sine and cosine “terms of the assumed slot

field, (6), should be interchanged. Further, in (1) the

summation over n starts at n = O, and the n = O term

should be halved.

III. SOLUTION OF THE PROBLEM

As explained earlier, the solution is based on combining

(5) along with (7). This results in the following set of

equations:

~ 2SJi(n) ~ a,f,(n)+f~fi(n) ~ b,g,(n)
!1=1 ~=’ n ~=1

N

=- ~ 2S~fi(n)f1(n), i=2,3,..., P
~=1

and

N

=- ~ ~gj(n)fl(n), j=l,2,3,0.., Q (11)
n=l

where

fp(~)=~L{sin[(2p-l)~J(Lj’~)]-sinYnY}I@
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and

m

w?f.18 _____
T

1.5
Wf. 9 _

&J~) = JL(COS [(2@ )fi;:--_’j ]“cosYnY) ~1.
+1*1 ref. 8 ___

I-=5 0.5 llus Wrk _

@/K. &3 +7

These are (~ – 1 + Q) simultaneous linear equations in 3-0

the unknowns az, aq,. . . . aP, bl, bz,. . . . bQ. Notice that the 2.9

propagation constant ~ is still unknown and is part of the / /f”

coefficients of the set (11). To complete the solution, (5) is
2.8

/

(,’

added to the set (11). The solution for ~ is sought first, 2“7

and once it is known the field coefficients are readily z.b

obtained. The technique adopted is straightforward. We

assume a value for ~ which is chosen close to the true 2“5 ~ 2“’”

value. (This is chosen in the vicinity of the value of the *A

propagation constant for the corresponding mode of a

similar dielectric loaded waveguide, for the non-TEM 1 2 34510 20 50 100 f(m)

mode, and is chosen to be ~-KO for the TEM Fig,, 4. variation of ~/K. with frequency compared with other meth-

mode.) The coefficients up and b~ are then obtained from

(11) for the assumed value of ~, and the result is sub-

stituted in (5), which must be zero for the true value of /?.

The procedure is iterated until the zero is captured. The

value of/3 is then obtained, and the coefficients a~ and b~,

hence the field solutions, are readily available. In the

following ,section, some results are presented and dis-

cussed.

IV. RESULTS AND DISCUSSION

A. TEikf Mode

Figs. 4 and 5 represent the normalized propagation

constant ~/KO as a function of frequency, compared with

results published in [8], [9], and [18]. The results of this

paper are presented for frequencies up to 50 MHz and, if

desired, could be easily extended to higher frequencies.

The results are shown to be almost ident~cal with ~hose of

the nonuniform discretization of integral equation [9] and

very close to the results of [10] in all frequency spectrums

tested up to 50 MHz. This verifies the accuracy of the

technique. Such good agreement with [9], [10] seems to

have its importance at the high frequency region where

discrepancy is noticed between our work and other meth-

ods presented here [8], [18] or presented in [9]. The accu-

racy of the empirical formulas [19], [20] seems to be

inaccurate by a considerable margin at high frequencies

[9].

Convergence towards the true value of ~ could be

obtained in a relatively small number of expansion terms.
When the expansion of (6) is truncated at p = q = 10, a

3-4 percent discrepancy of the true value of ~ is noticed.

Such convergence with a low number of terms and subse-

quently low computational time is indeed expected to be

due to the stationary nature of the expression. If higher

accuracy is desired, a higher number of expansion terms

could be used. In the results presented here, an initial

iteration at p = q = 8 is executed starting at a value of ~

={-*KO. When the root is captured, it is used as

a starting iteration for a second stage at p = q = 20 to 22.
In all cases examined, such a number of terms would result

in a stable value of ~. Table I presents an example of such

ods. Units are in millimeters.

This wor~

B/K. Ref. 9 _-

1
I 2t=2 .54

“K

m

—

10 20 30 40 50 f(GHz)

Fig. 5. Variation of /3/K0 with frequency. (r= 8.875, 2 L = 12.7 mm,
h =12.7 mm, d = 1.27 mm.

TABLE I

CONVERGENCE OF THE ROOT /l/KO AGAINST THE NUMBER OF

EXPANSION TERMS

P Q B/K.

3 3 3.1535

6 6 2.9405

10 10 2.8593

20 20 2.7968

22 22 2.7906

23 23 2.7885

~=15 GHz, 2t=l.905 mm, 2L =12.7 mm, c =8.875, d=l 27 mm,

h =12.7 mm.

a result for the specific case indicated. The number of

expansion terms used is comparable with that of the

integral equation method of [9]. Examination of the results

shows that the value of ~/KO seems to tend to a constant

value as the frequency increases. Investigating several re-

sults shows that this l@iting value approaches A. For
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Fig. 7. Variation ofpolarization ratio R with frequency. Parameters are

those of Fig. 5.

example, the result shown in Fig. 5 for c, =8.875 tends to

about 2.96 while & is 2.979. Other results available to the

author (not shown here) showed that for c,=5 and 12 the

limiting’ values are around 2.18 and 3.45; respectively,

which arevery close to fi =2.23 and @=3.46. It is also

found that in such case, the higher the value of c,, the

closer the ratio (limiting value of [ ~/KO]/&) is to unity.

This result indicates that the field in the very-high-

frequency case would possibly concentrate in the dielectric

region acquiring its mode of propagation.

Turning our attention now to the field polarization,

Figs. 6 and 7 present some examples of the results ob-

tained. These results are obtained by evaluating the coeffi-

cients aP and b~ of the expansion (6) as indicated in the

theory. Numerical evaluation shows that a large number of

terms of the expansion (6) are needed to obtain stabilized

values for the first few terms. Fig. 8 shows the convergence

of the first term of each of the aP’s and b~’s. It is clear that

they are slowly approaching a limit as the number of terms

increases. In all calculations of the polarization ratio R of

Fig. 7 (defined as lE21/~m) or polarization P of

Fig. 6, up to 22 terms of each expansion are considered to

approach as accurately as possible the true value of the

field. It is found that inclusion of higher number of terms

does not alter the value of R appreciably. Fig. 6 shows a

plot of the polarization lEzl/ IEYI versus frequency for two

different values of c, as compared with the only data

available to the author. This comparison is the reason to

consider IEzl/ IEYI and not the axial-to-total field ratio

(i.e., lE.1/{m as considered in Fig. 7). Results

show that the axial component of the electric field E= is

negligibly small at low frequencies where the field ap-

proaches true TEM. In fact, the quasi-TEM theory as

shown in [17] is highly accurate at this region. At higher

frequencies, however, the value of the axial field compo-

nent E, increases and the field deviates from the TENI-like

mode. Fig. 6 shows this general trend for two different

values of dielectric constant ~, compared with data pub-

lished in [17]. The agreement is quite remarkable. It is

shown that the polarization ratio decreases as c, decreases,

which is expected since as C, approaches unity one should

expect a true TEM mode inside the structure. In Fig. 7, the

polarization ratio R versus frequency is presented for

several different strip widths. The same general trend of

very low R at low frequency is observed. Also, it seems

that the polarization ratio tends towards a limit at wave-

length comparable to the structure dimensions. Further

work is under way to investigate analytically such limit. It

is clear that the ratio R is insensitive to the strip width, but

is primarily a function of frequency and dielectric constant

as evident from Figs. 6 and 7.

B. Higher Order Modes

Higher order modes were also investigated with respect

to both their propagation constant and polarization ratio.

Figs. 9 and 10 give the value of ~/KO compared with data

published in the literature. Results are almost typical of

those of [9]. However, this technique has the advantage of

being highly convergent. Table 11 shows a sample of the

results available where a total of only five terms was

sufficient to obtain a value for ~/KO with an error less

than 0.4 percent. This was noticed in all results examined

for the first as well as the higher-order modes. The similar-

ity of the ~ – ~ characteristics of these curves and the LSE

or LSM is evident and is discussed elsewhere [8], [9]. The

study of the polarization factor (Fig. 11) reveals the same

general characteristics observed in the TEM-like modes.

The value of R is low at low frequencies but, compared to

the TEM mode, it increases appreciably as the frequency

increases. They seem to tend to a limit. However, extra
work is needed to investigate such limiting value. Further,

the value of R decreases—as expected—with the lower

value of c.. The convergence of the co(;fficients of expan-

sion (6) is found to be much faster here than in the TEM

case. An example of this convergence is given in Tablle III.

Such difference in convergence may be attributed to the

difference in behavior between the TEM and the higher

order modes. While the expansion (6) is most suited for the
higher order modes, it might be more appropriate (for fast

convergence) to assume an expansion for the TEM which



850

a2 %
—7—

al al
-i

6

5

4

3

2

1

Fig. 8. Convergence of az

B/K.

2.5

2.0

1.5

1.0

0.5

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT:34, NO. 8, AUGUST 1986

Coefficient a2 _

Coefficient bl ___

~--//

/ 0’

,0’

I
0

/“

I ,/ 1 a

36912151821 24 Number of terms (P, Q)

and bl. Parameters are c,= 8.875, j_=15 GHz, 2? =1.905, 2L =12.7, h =12.7, d =1.27. All

dimensions are in millimeters.

LiJT0.635
11.43

++
1

~=.
1.27

~12.7+ ~

Ref. 9

This technique 000

/

o

0

x’ .
./0” /

10 15 20 25 Frequency : GHZ)
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compared with other published data (dimensions are in millimeters).
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TABLE II

CONVERGENCE OF THE PROPAGATION CONSTANT.

1

f = 15 GHz f = 25 GHz

m. of w M 3, 3 6, 6 9, 9 3, 3 6, 6 9, 9 12, 12

Root $/Ko 0.780 0. 784 0.785 1.754 1.7592 1.7580 1.7576

Parameters are, those of Fig. 9.

RI

0.8 .
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0.4 .

0.2

Z==12.—
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./ ‘r=8.875

/
./.

/
./.

/
/.

/.
S==2_ --. —

.-”----

4

15 20 25 30 f(G51z)

Fig. 11. Polarization Rofthefirst mode fordifferent vahsesof c,. Parameters arethoseof Fig.9.

TABLE III

EXAMPLE OF CONVERGENCE OF THE COEFFICIENTS OF
EXPANSION (8)

Nsr&r Ofterms M
=2 ‘3 % b2 b3

(3, 3) -0.627 0.124 -2.5 1.20 0.2

(6, 6) -0.66 0.088 -2.57 1.27 0.21

(8, 8) -0.684 0.076 -2.61 1.30 0.22

(10,10) -0.694 0.067 -2.61 1.317 0.224

(12,12) -0.700 0.062 -2.61 1.320 0.227

For the parameters of Fig. 9 (~ = 25 GHz).

takes into account the similarity between the TEM and the

corresponding static field for the same configuration.

Polarization for higher order modes is also investigated.

The general behavior is the same as for the TEM mode,

and they carry no new information to present.

V. CONCLUSION

This paper presents a variational technique to solve for

the dispersion characteristics as well as the field configura-

tion inside the shielded rnicrostrip transmission line. The

technique allows for rapid convergence of the propagation

constant due to the variational nature of the expression,

and the results are very close to results published previ-

ously. Further, the field solution is obtained and compares

well with the only data available to the author. Higher

order modes were also investigated, and the similarity

between such modes and those of the LSE and LSM was

shown both analytically and numerically.
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